Monday, October 5, 2015

Page 473

Problem 3

Problem. Find the arc length of the graph of the function $y=\frac{2}{3}\left(x^{2}+1\right)^{3 / 2}$ over the interval $[0,1]$.
Solution. We find $y^{\prime}=\left(x^{2}+1\right)^{1 / 2}(2 x)=2 x \sqrt{x^{2}+1}$. Then

$$
\begin{aligned}
\sqrt{1+\left(y^{\prime}\right)^{2}} & =\sqrt{1+4 x^{2}\left(x^{2}+1\right)} \\
& =\sqrt{1+4 x^{4}+4 x^{2}} \\
& =2 x^{2}+1 .
\end{aligned}
$$

The arc length is

$$
\begin{aligned}
s & =\int_{0}^{1}\left(2 x^{2}+1\right) d x \\
& =\left[\frac{2}{3} x^{3}+x\right]_{0}^{1} \\
& =\frac{5}{3}
\end{aligned}
$$

Problem 4

Problem. Find the arc length of the graph of the function $y=\frac{x^{3}}{6}+\frac{1}{2 x}$ over the interval [1, 2].
Solution. We find $y^{\prime}=\frac{x^{2}}{2}-\frac{1}{2 x^{2}}=\frac{1}{2}\left(x^{2}-\frac{1}{x^{2}}\right)$. Then

$$
\begin{aligned}
\sqrt{1+\left(y^{\prime}\right)^{2}} & =\sqrt{1+\frac{1}{4}\left(x^{2}-\frac{1}{x^{2}}\right)^{2}} \\
& =\sqrt{1+\frac{1}{4} x^{4}-\frac{1}{2}+\frac{1}{4 x^{4}}} \\
& =\sqrt{\frac{1}{4} x^{4}+\frac{1}{2}+\frac{1}{4 x^{4}}} \\
& =\frac{1}{2}\left(x^{2}+\frac{1}{x^{2}}\right) .
\end{aligned}
$$

The arc length is

$$
\begin{aligned}
s & =\int_{1}^{2} \frac{1}{2}\left(x^{2}+\frac{1}{x^{2}}\right) d x \\
& =\frac{1}{2}\left[\frac{1}{3} x^{3}-\frac{1}{x}\right]_{1}^{2} \\
& =\frac{1}{2}\left(\left(\frac{8}{3}-\frac{1}{2}\right)-\left(\frac{1}{3}-1\right)\right) \\
& =\frac{17}{12}
\end{aligned}
$$

Problem 9

Problem. Find the arc length of the graph of the function $y=\frac{x^{5}}{10}+\frac{1}{6 x^{3}}$ over the interval $[2,5]$.
Solution. We find $y^{\prime}=\frac{x^{4}}{2}-\frac{1}{2 x^{4}}=\frac{1}{2}\left(x^{4}-\frac{1}{x^{4}}\right)$. Then

$$
\begin{aligned}
\sqrt{1+\left(y^{\prime}\right)^{2}} & =\sqrt{1+\frac{1}{4}\left(x^{4}-\frac{1}{x^{4}}\right)^{2}} \\
& =\sqrt{1+\frac{1}{4} x^{8}-\frac{1}{2}+\frac{1}{4 x^{8}}} \\
& =\sqrt{\frac{1}{4} x^{8}+\frac{1}{2}+\frac{1}{4 x^{8}}} \\
& =\frac{1}{2}\left(x^{4}+\frac{1}{x^{4}}\right) .
\end{aligned}
$$

The arc length is

$$
\begin{aligned}
s & =\int_{2}^{5} \frac{1}{2}\left(x^{4}+\frac{1}{x^{4}}\right) d x \\
& =\frac{1}{2}\left[\frac{1}{5} x^{5}-\frac{1}{3 x^{3}}\right]_{2}^{5} \\
& =\frac{1}{2}\left(\left(625-\frac{1}{375}\right)-\left(\frac{32}{5}-\frac{1}{24}\right)\right) \\
& =\frac{618639}{2000}
\end{aligned}
$$

Problem 11

Problem. Find the arc length of the graph of the function $y=\ln \sin x$ over the interval $\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]$.
Solution. We find $y^{\prime}=\frac{\cos x}{\sin x}=\cot x$. Then

$$
\begin{aligned}
\sqrt{1+\left(y^{\prime}\right)^{2}} & =\sqrt{1+\cot ^{2} x} \\
& =\sqrt{\csc ^{2} x} \\
& =\csc x .
\end{aligned}
$$

The arc length is

$$
\begin{aligned}
s & =\int_{\pi / 4}^{3 \pi / 4} \csc x d x \\
& =[-\ln (\csc x+\cot x)]_{\pi / 4}^{3 \pi / 4} \\
& =-\ln \left(\csc \frac{3 \pi}{4}+\cot \frac{3 \pi}{4}\right)+\ln \left(\csc \frac{\pi}{4}+\cot \frac{\pi}{4}\right) \\
& =-\ln (\sqrt{2}-1)+\ln (\sqrt{2}+1) \\
& =\ln \left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right) \\
& =\ln (3+2 \sqrt{2})
\end{aligned}
$$

Problem 14

Problem. Find the arc length of the graph of the function $y=\ln \left(\frac{e^{x}+1}{e^{x}-1}\right)$ over the interval $[\ln 2, \ln 3]$.
Solution. Rewrite y as $y=\ln \left(e^{x}+1\right)-\ln \left(e^{x}-1\right)$ and differentiate.

$$
\begin{aligned}
y^{\prime} & =\frac{e^{x}}{e^{x}+1}-\frac{e^{x}}{e^{x}-1} \\
& =\frac{e^{x}\left(e^{x}-1\right)-e^{x}\left(e^{x}+1\right)}{\left(e^{x}+1\right)\left(e^{x}-1\right)} \\
& =-\frac{2 e^{x}}{\left(e^{2 x}-1\right)} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\sqrt{1+\left(y^{\prime}\right)^{2}} & =\sqrt{1+\left(-\frac{2 e^{x}}{\left(e^{2 x}-1\right)}\right)^{2}} \\
& =\sqrt{\frac{\left(e^{2 x}-1\right)^{2}}{\left(e^{2 x}-1\right)^{2}}+\frac{4 e^{2 x}}{\left(e^{2 x}-1\right)^{2}}} \\
& =\sqrt{\frac{e^{4 x}+2 e^{2 x}+1}{\left(e^{2 x}-1\right)^{2}}} \\
& =\sqrt{\frac{\left(e^{2 x}+1\right)^{2}}{\left(e^{2 x}-1\right)^{2}}} \\
& =\frac{e^{2 x}+1}{e^{2 x}-1} \\
& =\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}
\end{aligned}
$$

Now we integrate to get the arc length.

$$
\begin{aligned}
s & =\int_{\ln 2}^{\ln 3} \frac{e^{x}+e^{-x}}{e^{x}-e^{-x}} d x \\
& =\left[\ln \left|e^{x}-e^{-x}\right|\right] \ln 3 \\
& =\ln \left(e^{\ln 3}-e^{-\ln 3}\right)-\ln \left(e^{\ln 3}-e^{-\ln 3}\right) \\
& =\ln \left(3-\frac{1}{3}\right)-\ln \left(2-\frac{1}{2}\right) \\
& =\ln \frac{16}{9}
\end{aligned}
$$

Problem 17

Problem. (a) Sketch the graph of the function $y=4-x^{2}, 0 \leq x \leq 2$.
(b) Find a definite integral that represents the arc length over the interval.
(c) Use the integration capabilities of a graphing utility to approximate the arc length.

Solution. (a) The sketch of the graph:

(b) We have $y^{\prime}=-2 x$, so

$$
\sqrt{1+\left(y^{\prime}\right)^{2}}=\sqrt{1+4 x^{2}} .
$$

The integral is

$$
s=\int_{0}^{2} \sqrt{1+4 x^{2}} d x
$$

(c) Using the TI-83, I get $s=4.64678$.

Problem 19

Problem. (a) Sketch the graph of the function $y=\frac{1}{x}, 1 \leq x \leq 3$.
(b) Find a definite integral that represents the arc length over the interval.
(c) Use the integration capabilities of a graphing utility to approximate the arc length.
Solution. (a) The sketch of the graph:

(b) We have $y^{\prime}=-\frac{1}{x^{2}}$, so

$$
\begin{aligned}
\sqrt{1+\left(y^{\prime}\right)^{2}} & =\sqrt{1+\left(-\frac{1}{x^{2}}\right)^{2}} \\
& =\sqrt{1+\frac{1}{x^{4}}}
\end{aligned}
$$

The integral is

$$
s=\int_{1}^{3} \sqrt{1+\frac{1}{x^{4}}} d x
$$

(c) Using the TI-83, I get $s=2.14662$.

Problem 21

Problem. (a) Sketch the graph of the function $y=\sin x, 0 \leq x \leq \pi$.
(b) Find a definite integral that represents the arc length over the interval.
(c) Use the integration capabilities of a graphing utility to approximate the arc length.
Solution. (a) The sketch of the graph:

(b) We have $y^{\prime}=\cos x$, so

$$
\sqrt{1+\left(y^{\prime}\right)^{2}}=\sqrt{1+\cos ^{2} x} .
$$

The integral is

$$
s=\int_{0}^{\pi} \sqrt{1+\cos ^{2} x} d x
$$

(c) Using the TI-83, I get $s=3.82020$.

Problem 23

Problem. (a) Sketch the graph of the function $x=e^{-y}, 0 \leq y \leq 2$.
(b) Find a definite integral that represents the arc length over the interval.
(c) Use the integration capabilities of a graphing utility to approximate the arc length.

Solution. In this problem, the roles of x and y are reversed. You may work it with x and y reversed, or you may rewrite the function as $y=-\ln x$ and the interval as $e^{-2} \leq x \leq 1$. Either way, you get the same answer.
(a) The function is the same as the function $y=-\ln x$. The sketch of the graph:

(b) We have $x^{\prime}=-e^{-y}$, so

$$
\begin{aligned}
\sqrt{1+\left(x^{\prime}\right)^{2}} & =\sqrt{1+\left(-e^{-y}\right)^{2}} \\
& =\sqrt{1+e^{-2 y}} .
\end{aligned}
$$

The integral is

$$
s=\int_{0}^{2} \sqrt{1+e^{-2 y}} d y
$$

(c) Using the TI-83, I get $s=2.22142$.

Problem 34

Problem. Find the total length of the graph of the astroid $x^{2 / 3}+y^{2 / 3}=4$.
Solution. Note: this is an astroid, not an asteroid.
Solve for y and get

$$
y=\left(4-x^{2 / 3}\right)^{3 / 2}
$$

Now differentiate.

$$
\begin{aligned}
y^{\prime} & =\frac{3}{2}\left(4-x^{2 / 3}\right)^{1 / 2} \cdot\left(-\frac{2}{3} x^{-1 / 3}\right) \\
& =-x^{-1 / 3}\left(4-x^{2 / 3}\right)^{1 / 2}
\end{aligned}
$$

Then

$$
\begin{aligned}
\sqrt{1+\left(y^{\prime}\right)^{2}} & =\sqrt{1+\left(-x^{-1 / 3}\left(4-x^{2 / 3}\right)^{1 / 2}\right)^{2}} \\
& =\sqrt{1+x^{-2 / 3}\left(4-x^{2 / 3}\right)} \\
& =\sqrt{1+4 x^{-2 / 3}-1} \\
& =\sqrt{4 x^{-2 / 3}} \\
& =2 x^{-1 / 3} .
\end{aligned}
$$

Now integrate to find the arc length.

$$
\begin{aligned}
s & =\int_{0}^{8} 2 x^{-1 / 3} d x \\
& =2\left[\frac{3}{2} x^{2 / 3}\right]_{0}^{8} \\
& =2 \cdot 6 \\
& =12
\end{aligned}
$$

So the distance around all four sides is $4 \cdot 12=48$.

